Physics 137B Section 1: Problem Set #9 Due: 5PM Friday April 23 in 2nd floor LeConte-Birge Cross-Over

Suggested Reading for this Week:

• B& J Sections 13.1 - 13.4

Homework Problems:

1. (from Griffiths Problem 11.2) We saw in class that the general solution to the Schrodinger Equation for a particle of given initial momentum $p = \hbar k\hat{z}$ scattering off a potential V(r) is

$$\psi(r,\theta) = A \left\{ e^{ikz} + f(\theta) \frac{e^{ikr}}{r} \right\}$$

for large r. Construct the analogs to this equation for one-dimensional and two-dimensional scattering.

- 2. Using the definition of the cross section (B& J equation 13.1) and B& J Figure 13.6, prove B& J equations 13.87, 13.88, 13.89 and 13.90.
- 3. In class we saw that the wave function for scattering off a potential V(r) can be expressed at large r in the form

$$\psi(r,\theta) = A\Sigma_{\ell=0}^{\infty} \left[i^{\ell} (2\ell+1) J_{\ell}(kr) + \sqrt{\frac{2\ell+1}{4\pi}} C_{\ell} h_{\ell}^{(1)}(Kr) \right]$$

and that for scattering off a hard sphere of radius a

$$C_\ell = -i^\ell \sqrt{4\pi(2\ell+1)} rac{j_e ll(ka)}{h_\ell^1(ka)}$$

(see Griffiths pages 360-361)

(a) The radius R of a nucleus can be expressed as

$$R = r_0 A^{1/3}$$

where $R_0 = 1.1 \times 10^{-15}$ m and A is the mass number of the nucleus. Suppose a neutron scatters from a Gold nucleus. For what range of neutron momenta would you expect s-wave scattering to dominate?

- (b) Suppose our nucleus has a kinetic energy of 1 MeV/c. What is the scattering cross section is you assume only s-wave scattering is important?
- (c) What is the size of the p-wave $(\ell = 1)$ term relative to the s-wave term calculated above?
- 4. (taken from Liboff Problem 14.2) The scattering amplitude for a certain interaction is given by

$$f(\theta) = \frac{1}{k} \left(e^{ika} \sin ka + 3ie^{2ika} \cos \theta \right)$$

where a is the range of the potential and k is the wavenumber of the incident particle

- (a) What is the s-wave differential cross section for this interaction?
- (b) Suppose the above scattering amplitude is appropriate to neutrons incident on a species of nuclear target. Let a beam of 1.3 eV energy neutrons with current 10^{14} cm⁻²s⁻¹ be incident on this target. What number of neutrons per second are scattered out of the beam into $4\pi \times 10^{-3}$ sterradian about the forward direction? Take a to be 2×10^{-15} m.